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SUMMARY

The development of new aeronautic projects require accurate and ef®cient simulations of compressible ¯ows in
complex geometries. It is well known that most ¯ows of interest are at least locally turbulent and that the
modelling of this turbulence is critical for the reliability of the computations. A turbulence closure model which
is both cheap and reasonably accurate is an essential part of a compressible code. An implicit algorithm to solve
the 2D and 3D compressible Navier±Stokes equations on unstructured triangular=tetrahedral grids has been
extended to turbulent ¯ows. This numerical scheme is based on second-order ®nite element±®nite volume
discretization: the diffusive and source terms of the Navier±Stokes equations are computed using a ®nite element
method, while the other terms are computed with a ®nite volume method. Finite volume cells are built around
each node by means of the medians. The convective ¯uxes are evaluated with the approximate Riemann solver of
Roe coupled with the van Albada limiter. The standard k±e model has been introduced to take into account
turbulence. Implicit integration schemes with ef®cient numerical methods (CGS, GMRES and various
preconditioning techniques) have also been implemented. Our interest is to present the whole method and to
demonstrate its limitations on some well-known test cases in three-dimensional geometries. # 1997 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The development of new aeronautic projects requires physical investigations of compressible

turbulent ¯ows. With problems related to aerodynamic measurement in high-speed ¯ows, the

numerical study of these ¯ows is easier than experimental investigations. The problem is then to

select ef®cient and robust numerical methods with suitable turbulence models to simulate these ¯ows.

Various researchers have been performed to compare the numerous high-order schemes for the Euler

equations available to date.1,2 The converging point of view is that a ®nite volume formulation

coupled with an upwind conservative scheme is one of the best solutions available. The diffusive part
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of the Navier±Stokes equations can be evaluated with a classical centred formulation. Furthermore,

owing to the ease with which complex geometries can be handled and the possibility of enhancing the

solution accuracy through local mesh re®nements, unstructured meshes are often employed. A ®nite

element method can be chosen for the discretization of the diffusive part of the Navier±Stokes

equations because of its ability to evaluate gradients even on irregular discretization cells.

The mixed ®nite element±®nite volume method, initially developed by Dervieux and coworkers3±5

for simulation of Euler ¯ows, offers the possibility of using ®nite volume±®nite element coupling on

unstructured meshes. The success of this method in solving compressible viscous ¯ows6 encourages

us to extend it to turbulent ¯ows in 2D7,8 and 3D. The resulting numerical method uses a second-

order MUSCL ®nite volume method for the discretization of the convective ¯uxes and a second-order

®nite element method well suited to the evaluation of viscous gradients. It must be pointed out that

the convective ¯uxes are evaluated with the approximate Riemann solver of Roe9 to ensure good

capturing of the discontinuities even in the strongly viscous regions. To model the turbulence, the

one-point k±e closure model, initially developed by Launder and Spalding10 for incompressible ¯ows,

has been introduced. A non-coupled approach has been chosen, following the implementations of Le

Ribault,7 which uses a 2D explicit time integration technique for both the Reynolds-averaged Navier±

Stokes equations and the k±e equations. Wall functions have been introduced to avoid the use of

excessive points in the vicinity of walls. The transport equations of the scales of turbulence are only

weakly coupled with the aerodynamic vector by introducing the contribution of the kinetic energy of

the turbulence in the total energy and by upwinding the convective ¯uxes of k and e according to the

mass ¯ux of the mean Navier±Stokes equations.

As we are interested in the simulation of steady ¯ows, a linearized implicit time integration scheme

and a local time step are employed to compute the solution.

In this paper we ®rst present the Navier±Stokes equations and the introduction of the k±e model.

The mixed ®nite volume±®nite element formulation in two and three dimensions and the implicit

time integration technique are then described. Our main goal is to test the whole implicit method and

to show that this non-coupled approach is a solid basis for introducing more sophisticated turbulence

models, multiple species and combustion. That is our ®nal aim.11,12

The whole numerical method has been validated on well-known test cases: an incompressible

turbulent jet, a supersonic mixing layer and a three-dimensional pipe.

2. GOVERNING EQUATIONS AND TURBULENCE MODEL

2.1. Mean Navier±Stokes equations

The motion of a viscous gas is governed by the Navier±Stokes equations, which express the

conservation of mass, momentum and energy. The governing equations of the mean ¯ow are obtained

by an averaging of the Navier±Stokes equations±-a Reynolds average is used for the density and the

total energy and a Favre average is used for the velocity:

@ �r
@t
� div� �r~u� � 0;

@ �r~u

@t
� div� �r~u~u� ~pI � � ÿdiv� �rgu00i u00j � � m div�grad ~u� gradT ~u� ÿ 2

3
m grad�div ~u�;

@ �E

@t
� div� �E ~u� � div�E0u00� � div��p~u� � div�p0u00� � div�tu� � gm

Pr
div�grad ~e�;

�1�

where �r is the density, �E is the total energy per unit volume, ~ui are the velocity vector components

along the Cartesian co-ordinates, �p is the static pressure, t is the viscous stress tensor, Pr is the
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Prandtl number and t is the time. For further developments the mean internal energy ~e and the mean

speci®c enthalpy �H are also de®ned.

To solve the closure problem introduced by the averaging procedure, the Reynolds stress gu00i u00j and

the turbulent heat ¯uxes are modelled using a Boussinesq hypothesis:

ÿ �rgu00i u00j � mt

@~ui

@xj

� @~uj

@xi

ÿ 2

3

@~uk

@xk

dij

 !
ÿ 2

3
�rkdij: �2�

The other terms introduced by the averaging procedure are E0u00i , p0u00 and tu. For further modelling of

these correlations a turbulent thermal conductivity kt is introduced so that

rE0u00i � tu � ÿkt

@ ~T

@xj

� ~ui��tÿ ru00i u00j �: �3�

The turbulent viscosity mt, is written as a function of two local turbulent scales: the turbulent

kinetic energy k � 1
2

u00i u00i and its dissipation rate re � tij@u
00
i =@xj. It is de®ned by mt � Cmrk2=e,

where Cm � 0�09.

By multiplying the evolution equations of momentum by the velocity ¯uctuations and by averaging

the resulting equation, one can obtain the governing transport equation for the turbulent kinetic

energy ~k:

@ �r~k

@t
� @ �r~k ~uj

@xj

� @

@xj

m� mt

sk

� �
@~k

@xj

" #
� Pk ÿ �r~e; �4�

where the production of turbulent kinetic energy, Pk , is de®ned as

Pk � ÿ �rgu00i u00j
@~ui

@xj

: �5�

A second equation is required to evaluate the dissipation rate of the kinetic energy ~e. After

introducing assumptions about production and dissipation, the corresponding transport equation can

be written as

@ �r~e
@t
� �r~e~uj

@xj

� @

@xj

m� mt

se

� �
@~e
@xj

" #
� Ce1Pk

~e
~k
ÿ Ce2 �r

~e2

@~k
: �6�

All the quantities are made dimensionless using three characteristic scales, r0; u0 and l0, so that the

modelled Navier±Stokes equations can be written in the vectorial form

@q

@t|{z}
temporal derivative

� div F�q�|�����{z�����}
convective fluxes

� 1

Re
div R�q�|�������{z�������}

viscous terms

� o�q�|�{z�}
source terms;

�7�
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where

q �

�r

�r ~~u

�E

�r~k

�r~e

26666664

37777775; F�q� �

�r ~~u

�r ~~u
 ~~u� �p� 2
3

�r~k� )I
� �E � �p� 2

3
�r~k� ~~u

�r ~~u~k

�r ~~u~e

266666664

377777775
;

R�q� �

0
)
�s

)
s ~~uÿ gm

Pr
� gmt

Prt

� �
grad ~eÿ mt

sk

grad ~k

m� mt

sk

� �
grad ~k

m� mt

se

� �
grad ~e

266666666666664

377777777777775
:

The source term o�q� is de®ned as

o�q� �
Pk ÿ �r~e

Ce1
~e
~k

Pk ÿ Ce2 �r
~e2

~k

264
375:

The values of the constants are the classical values obtained in the incompressible case:

sk � 1; se � 1�3, Ce1 � 1�44, Ce2 � 1�92.

This system is closed after one has chosen the average state equation. The perfect gas law is used,

written as

�p � �gÿ 1�� �E ÿ 1
2

�r�~u2
1 � ~u2

2 � ~u2
3� ÿ �r~k�: �8�

To preserve the perfect state relation between �p and the mean total energy �E, an appropriate change

of variables has been de®ned by setting �p0 � �p� 2
3

�r~k. Consequently we get

�p0 � �gÿ 1�� �E ÿ 1
2

�r�~u2
1 � ~u2

2 � ~u2
3� � b �r~k�; �9�

where b � ÿ1� 2=3�gÿ 1�. Choosing �E0 � �E � b �r~k, the relation between �p0 and �E0 has the classical

form

�p0 � �gÿ 1�� �E0 ÿ 1
2

�r�~u2
1 � ~u2

2 � ~u2
3��: �10�

This change of variable has the interesting consequence that a standard Riemann solver can be used

to approximate the hyperbolic part of the averaged Navier±Stokes equations. The equation of

evolution of energy has only to be replaced by the equation of evolution of �E0, which is the classical

evolution equation for �E plus some additional terms from the evolution equation of b �r~k.

The above equations describe the three-dimensional motion of a compressible turbulent ¯ow. The

standard k±e model allows the computation of most test cases, but some limitations exist because

compression and compressibility effects on the turbulence are not fully taken into account in the

model.
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2.2. Wall functions

The derivation of the k±e model is made under the hypothesis of high-Reynolds-number ¯ows. The

®rst possibility is to use a low-Reynolds-number model, but such models require a considerable

number of nodes in the vicinity of the wall. Wall functions13 have then been preferred to model the

near-wall region. The equations for the mean ¯ow and turbulence scales are solved up to a distance d
away from the wall and the wall functions are used as boundary conditions at the boundary wall. The

dimensionless wall distance y� and the friction velocity uf are introduced such that y� � ruf y=m and

uf �
p�tp=r�, where tp is the parietal tension. The wall functions can be written as

~u � ~t � uf y
� if y� < 11�6;

uf ��1=K� log y� � C� if y�5 11�6;
�

where ~u � ~t is the tangential velocity. K and C are the Von Karman universal constants, respectively

equal to 0�419 and 5�445. For the turbulence quantities, equilibrium between production and

dissipation rates gives the proper boundary conditions ~k � u2
f =
p

Cm and ~e � u3
f =dK.

These laws have been established for incompressible ¯ows, but experiments with compressible

boundary layers show that they remain valid in the absence of strong density variations.

3. MIXED FINITE-VOLUME±FINITE-ELEMENT METHOD

The numerical method is an extension of the mixed ®nite volume-®nite element method initially

developed to solve the unsteady Navier±Stokes equations.6 The approach presented below operates

an unstructured ®nite element mesh, using a MUSCL upwind formulation for the hyperbolic terms

and a Galerkin ®nite element method for the diffusive part of the Navier±Stokes equations. Here the

general framework of the mixed ®nite element±®nite volume method to solve (7) will be presented.

In Section 3.1 we will outline the dual ®nite element±®nite volume mesh and in Section 3.2 the

spatial discretization of the averaged equations. The time discretization and the boundary conditions

are then discussed in Sections 3.3 and 3.4 respectively.

3.1. Dual ®nite volume mesh

We assume that S is a polygonal bounded domain of R2 �R3�. Let Th be a standard triangulation

(tetrahedrization) of S. Starting from Th, a dual ®nite volume mesh is built such that there exists a

bijective operator from the ®nite element mesh to the ®nite volume mesh and such that the ®nite

volume mesh covers exactly the domain S.

The following notation is also introduced:

(a) meas CiÐthe control area (volume) of the ®nite volume cell Ci

(b) NiÐthe number of neighbouring vertices of i.

In the two-dimensional case the ®nite volume cell Ci associated with the vertex i is de®ned as

follows.

1. Every triangle of Th having node i as a vertex is subdivided by means of its medians.

2. The cell Ci is then de®ned as the union of the resulting subtriangles having node i as a vertex;

see Figure 1.

This concept of two-dimensional construction is extendible to the three-dimensional case. A dual

®nite volume partition is derived from the construction of median planes. For each vertex i a ®nite

volume cell is de®ned. Every tetrahedron having i as a vertex is subdivided into subtrahedra by means
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of planes containing an edge and the middle of the opposite edge. Then the cell Ci is the union of the

subtrahedra having i as a vertex; see Figure 2.

3.2. Spatial discretization of mean ¯ow

Starting from the general variational formulation of the averaged Navier±Stokes equations (7), a

discrete formulation is obtained by using the characteristic function ji of the ®nite volume cell Ci as

the test function for the convective part of the equation and the usual piecewise linear ®nite element

basis function fi as the test function for the diffusion and source terms:

�
Ci

@q

@t
� div F�q�

� �
ji dv �

�PT
Ci

�grad R�q� � o�q��fi dv: �11�

Green's theorem is applied to the convective ¯uxes, while the viscous terms are integrated by parts.

The temporal derivative is integrated in a straightforward way by considering that qi is constant over

Figure 1. Control area Ci in 2D

Figure 2. Part of control volume Ci in 3D
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the cells, which is fully equivalent to using a ®nite element discretization with a mass-lumping

approximation. After these manipulations the variational formulation is written as

@

@t

�
Ci

q dv�
�
@Ci

F�q; ~ni� ds � ÿ
�PT

Ci

�R�q� � grad fi � o�q�fi� dv�
�
G

R�q; ~v�fi ds;

where ~ni is the outward unit vector to @Ci, such that ~ni � �nix; niy; niz) in three dimensions, and ~v is the

outward unit vector to the boundary G.

The discretization of the viscous, convective and source terms will now be de®ned.

Viscous terms

Since the viscous part of the compressible Navier±Stokes equations is parabolic, no oscillations

can arise in the diffusion-dominated region, so the discretization is carried out in a centred way with a

standard second-order ®nite element formulation. Bear in mind that with each vertex i is associated

the test function fi lying in a space of continuous, linear in each element, functions and which ful®ls

fi�j� � dij. Thus any function f and its gradient are interpolated over a ®nite element T by

f �x; y; z�jT �
P
j2T

f � j�fjjT �x; y; z�; grad f �x; y; z�jT �
P
j2T

f � j� grad fjjT �x; y; z� � constant:

This technique is applied directly to the diffusive ¯ux vector R�q�. The details of this manipulation

can be found in the work of Rostand.6

The integral
�
G R�q; ~v�fi ds is neglected.

Convective terms

The scheme will be completely de®ned once the approximation of the convective terms has been

made precise. Upwinding is introduced in the computation of the convective terms through the

numerical ¯ux function F of a ®rst-order-accurate upwind scheme by�
@Ci

F�q; ~ni� ds � PNi

k�1

F�qi; qk; ~nik�: �12�

The numerical ¯ux function used is the approximate Riemann solver (ARS) of Roe9 with the entropy

correction of Harten and Hyman:14

F�qÿ; q�; ~ni� � 1
2
�F�qÿ; ~ni� � F�q�; ~ni�� ÿ 1

2
jA�~q; ~ni�j�q� ÿ qÿ�;

where

~r � p�rÿr��; ~q � q�O� qÿ
O� 1

; O � q�
qÿ

� �r
; ~q � ~v

H

�
and

A � @F
@q
� RLRÿ1; jAj � RjLjRÿ1:

It is evaluated in a standard way, between vertices i and k, as a projection of the approximate ¯ux on

the direction normal to the boundary of the cell. In order to prevent any of the eigenvalues li from

vanishing, one approximates jlj through Q�l�:14

jlj � Q�l� � diag
1
2
�l2=d � d�; jlj < d;
jlj; jlj5d;

�
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where d is a small parameter.

The normal vector is obtained through the formulation

~nik �
�
@Sik

~ni ds:

In two dimensions there are two contributions ~n1 and ~n2 from the two segments �G1; I � and �I; G2�
constructed from the barycentres of adjacent elements (see Figure 3 on the left). In three dimensions

the segments become surfaces and there are many contributions from adjacent tetrahedra (see Figure

3 on the right).

The numerical integration described previously leads to approximations which are only ®rst-order-

accurate in space. A second-order MUSCL-like extension is used15 to improve the precision of the

method without changing the approximation space. The spatial precision of the ¯ux is increased by

interpolating the arguments of the numerical ¯ux in equation (12) at the boundaries of the cell @Ci

(internodal values between nodes i and k):

qÿ � qi � 1
2

grad qi � ~nik ; q� � qk ÿ 1
2

grad qk � ~nik :

From a solution that is constant within a cell, a piecewise linear solution is calculated over the cell.

This is an extension of the MUSCL method15 to the ®nite element method,16,17 because the gradients

of the state vector q are computed with the ®nite element technique:

grad qi �
�

Ci
grad qf dv�

Ci
dv

� 1

meas Ci

P
oCi

T

meas T

dim

Pdim

j�1

q
j
i grad fijT ;

where dim is the number of nodes of ®nite elements, three in 2D and four in 3D, meas Ci is the

control area in 2D, or control volume in 3D, of the ®nite volume cell Ci and meas T is the control area

in 2D, or control volume in 3D, of the ®nite element T.

A limiter technique is ®nally applied to damp off numerical oscillations. The scheme of O�Dx2� is

preserved in areas where the gradient of q is smooth, while in the vicinity of discontinuities, i.e.

shocks, the scheme becomes increasingly ®rst-order upwind, which introduces numerical dissipation

with a bene®cial dampening effect. Thus a quasi-TVD scheme is obtained.18 Using a one-

dimensional limiter, the arguments in the numerical ¯ux become

qÿ � qi � 1
2

lim�2 grad qi � ~nik ÿ �qk ÿ qi�; �qk ÿ qi��;
q� � qk ÿ 1

2
lim�2 grad qk � ~nik ÿ �qk ÿ qi�; �qk ÿ qi��;

Figure 3. Construction of ~nij: 2D on left; 3D on right.
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where a combination of the van Leer limiter and the van Albada limiter19 is utilized in accordance

with the work of Sacquepee:20

lim �a; b� �
�a2 � e�b� �b2 � e�a

a2 � b2 � 2e
; ab > 0;

0; ab4 0:

8<:
Source terms

The source terms are written in the generic form�
oCiT

ofi dv:

The integration is obtained through the classical ®nite element manipulations:�
oCiT

ofi dv �PNi

j�1

�
Tj

ofi dv

�PNi

j�1

�
Tj

Pdim

k�1

okfkfi dv

�PNi

j�1

Pdim

k�1

ok

�
Tj

fkfi dv

�PNi

j�1

meas Tj

Pdim

k�1

ok :

Coupling with extra equations; k±e model

The coupling between the average Navier±Stokes equations and the transport equations of the

turbulent scales k and e is weakly achieved by means of the change of variable between the total

energy and the total energy including the turbulent kinetic energy (see Section 2.1). This change of

variable has the bene®cial effect of improving the precision of the solution, but it does not prevent

numerical oscillations in the advection-dominated regions. A solution proposed by Larrouturou21 is

to upwind the convective terms of the extra equations in accordance with the mean mass ¯ux splitting

from the averaged Navier±Stokes equations.

3.3. Time discretization

The spatial discretization procedures described in the previous subsections lead to a

semidiscretized formulation which has to be integrated to reach steady state. An explicit version

can be derived by using a diagonal mass-lumped matrix, which effectively amounts to assuming a

constant value of q over the cell Ci equal to qi.

This is the explicit forward Euler scheme. The time step Dti can be set equal to a constant for ®rst-

order-accurate time integration or taken equal to the value matching a local CFL stability condition

for steady state computation:�
Ci

@q

@t

� �
dv � meas Ci

qn�1
i ÿ qn

i

Dti
� �K�qn��i; �13�

IMPLICIT MIXED FINITE-VOLUME±FINITE-ELEMENT METHOD 1249

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1241±1261 (1997)



where �K�qn��i denotes the sum of the ¯uxes (convective, viscous, source terms) evaluated at time

level n.

This explicit scheme is easy to implement and can be solved without any matrix inversion. For the

Euler equations the stability condition leads to the quantity

C1 � �juj � c� Dt

Dx
:

For the Navier±Stokes equations the stability condition leads to the quantity

C2 �
1

r Re Pr

Dt

Dx2

;

which must of magnitude one for the explicit scheme. This means that the time step is bounded by a

value proportional to the square of the minimum cell height.

In order to remove this restrictive condition, one attempts to design implicit algorithms. For that

purpose a linearized Newton procedure for each term is applied to equation (13) after we have

replaced qn by qn�1.

A Taylor series expansion gives

�K�qn�1��i � �K�qn��i �
@�K�qn��i

@t
� O�Dt2�;

with

@�K�qn��i
@t

� @�K�q
n��i

@q

@q

@t

����n
and

qn�1 � qn � @q
@t

����nDt � O�Dt2�:

The implicit formulation is given by

@q

@t

����n � qn�1 ÿ qn

Dt
� O�Dt2�;

�K�qn�1��i � �K�qn��i �
@�K�qn��i
@q

�qn�1 ÿ qn� � O�Dt2�:

One obtains the equivalent discrete system

meas Ci

Dt
ÿ @�K�q

n��i
@q

� �
dqn � �K�qn�1��i; �14�

where dqn � qn�1 ÿ qn and @�K�qn�i�=@q is the Jacobian of the ¯uxes.

The exact linearization of the convective ¯ux F�q� is quite complicated in the general case, so a

simpler form of matrix is generally chosen4.

1. The matrix @�K�qn��i=@q is replaced by one relying on the ®rst-order-accurate approximation.

2. Only the homogeneous part of the Jacobian matrix has been retained.

3. The turbulent contributions are neglected in the linearization of the aerodynamic state vector, in

such a way that a decoupled approach can be used.

The linearization of diffusive and source terms is straightforward, by considering constant

gradients and mean state vector values per element.
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To solve the full set of equations (14) at each time step, the averaged Navier±Stokes equations are

®rst solved with the values of mt and ~k taken from the turbulent variables at time level n, then the two

transport equations for ~k and ~e are solved with the mean aerodynamic values taken at time level n.

The coupling is achieved with the change of variable and with the use of the mass ¯ux for upwinding

convective ¯uxes.

3.4. Boundary conditions

Since the state vector q is collocated at the cell vertex, boundary conditions can be either imposed

on the boundary nodes or satis®ed within the weak formulation through a numerical ¯ux. These two

possibilities are used in the numerical method. Dirichlet conditions are imposed on solid walls for k

and e, while the other boundary conditions are imposed through numerical ¯uxes de®ned below.

Solid walls

A ®rst estimate of the skin friction velocity uf is computed from the tangential velocity ~~u � ~t using

the linear law uf �
p� ~~u � ~t�= ~rd. In the two-dimensional case the tangent vector is given by the

direction of the mean velocity on the cell boundary. In three dimensions the direction of the

tangential velocity is given by the velocity at the internal node of the tetrahedron.

If y� > 11�6, a new evaluation of uf is computed from the logarithmic law using a Newton method.

The viscous stress tp � ru2
f , which appears in the variational formulation, is calculated with the one-

dimensional ®nite element theory and imposed on each boundary cell of G:�
Gi

tpfi dl �
�
Gi

ru2
f fi dl: �15�

Inlet and outlet boundary sections

The numerical ¯ux of Steger and Warming22 is evaluated from the boundary nodes and an external

¯ow ®eld as shown in Figure 4 in the two-dimensional case. In the three-dimensional context the

boundary cells can be really complicated to represent, but the construction procedure is identical to

the one in Figure 3 on the right. This external ¯ow ®eld, referenced as q1, uses physical values as

well as numerical values obtained from compatibility relations.23. These relations provide the

numerical values for subsonic inlets (imposed mass ¯ow rate or direction and total conditions) and

supersonic and subsonic outlets (static pressure imposed). The supersonic inlet ¯ow ®eld state is not

modi®ed. Concerning the implicit treatment, the numerical ¯uxes applied within the weak

formulation are linearized, but the compatibility relations stay explicit. This approach is both robust

and accurate for steady calculations because it yields some bene®cial ¯uctuations during

convergence.

Slip or symmetry conditions

A centred Euler ¯ux is applied on these boundaries, specifying that the normal velocity is zero. A

compatibility relation is used to evaluate the pressure, taking the internal ®eld into account.

3.5. Solution algorithms

This decoupled approach has proved to be stable enough, even for large time steps, with an

ef®cient routine for the resolution of the linear system.
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The linear system arising from the discretization is Ax � b, where A is an asymmetric, sparse,

(dim� 1)6(dim� 1) block matrix of dimension (dim� 1)6N, with N the number of discretization

nodes. A compact storage technique is used, into which only the non-zero blocks are stored. For line i

of the metric these non-zeros correspond to nodes physically connected to node i by means of the

convective ¯ux, diffusive gradient or boundary condition. An evaluation of the number of connected

nodes is given by the number of nodes neighbouring i, since the implicit linearization is only ®rst-

order in space.

The resolution of equations is the main goal of a previous paper24 on the testing of various

numerical methods for solving linear systems arising from this kind of discretization. As a result of

this extensive work, a CGS solver with SSOR preconditioning25 has been preferred to the methods

based on Krylov subspaces.26,27

4. VALIDATION TEST CASES

Three typical compressible turbulent ¯ows are simulated: a low-Mach-number two-dimensional

axisymmetric turbulent jet, a two-dimensional turbulent supersonic mixing layer and a three-

dimensional pipe. Our goal is twofold.

1. First we want to evaluate the spatial accuracy of a 3D calculation compared with a 2D

calculation.

2. The second objective is to validate the decoupled approach for 3D ¯ows. This has to be

considered as work in progress, so the results presented here are only preliminary results. The

boundary conditions include symmetry or slip walls as well as inlet and outlet sections and solid

walls.

4.1. Turbulent low-Mach-number jet

This is a 2D axisymmetric annular jet that is weakly heated. It has been studied experimentally by

Bahraoui28 and numerically by Brun.29 The simulation is carried out from the potential zone of the jet

�x=D � 4�5� to a section such as x=D � 12�5. For the inlet boundary the total pressure, total enthalpy,
~k and ~e are deduced from experiment. The ¯ow is subsonic with a maximum Mach number equal to

0�08. The outlet pressure is atmospheric pressure. Two computations have been done: a 2D

axisymmetric one with 600 nodes and a true 3D calculation. The 3D mesh is obtained from a quarter-

rotation of the 2D plane around the x-axis (with ®ve radii) and is shown in Figure 5.

Figure 4. Boundary control area and outward-pointing vector in 2D
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Figure 5. Three-dimensional mesh of turbulent low-Mach-number jet

Figure 6. Low-Mach-number jet: axial pro®le of ~u1
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Three calculations are presented here: two with our numerical method (a 2D axisymmetric one and

a full 3D calculation) and a 2D axisymmetric one with the NSkeps numerical method.7 This

numerical method is also based on a mixed ®nite element±®nite volume discretization, but the

boundary conditions are different and an explicit time integration scheme is used. Our results are

referenced hereafter as 2D and 3D and the NSkeps results are referenced as 2D axi NSkeps. Figure 6

shows the computed velocity component ~u1 along the axis. The experimental results of Bahraoui are

superimposed on the 3D and 2D axisymmetric computational results. Figure 7 shows the radial

pro®le of u1 at the section x=D � 8. Figure 8 shows the decrease in ~k and ~e along the axis from both

2D axi and 3D Natur calculations.

A small difference exists between the 2D and 3D results. It can probably be attributed to some 3D

effect on the size of cells, which increases the numerical diffusion. This was already noticed with

eular simulations, where the quality of the mesh (ratio of the element dimensions) was not very good

owing to the poor number of nodes used for the rotation of the 2D mesh.

A global view of the resulting ¯ow is shown in Plate 1: the iso-values of Mach number are

presented.

4.2. Supersonic mixing layer

The computed supersonic mixing layer corresponds to the experiment realized by Goebel et al.30

The Mach numbers of the two incoming ¯uids are respectively 1�91 and 1�37. The mean freestream

velocity ratio U1=U2 is 0�58 and the mean density ratio r1=r2 is 1�56.

Figure 7. Low-Mach-number jet: radial pro®le of ~u1 (at x=d � 8)
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In non-dimensional units of the geometry is one unit high by eight units long. It is shown in Figure

9.

The computation begins in a section where the mixing layer is fully developed (x� 0); the outlet

section is at x� 8. The ¯ow ®eld has similarity properties along the x-axis. Simulations have also

been done in the two-dimensional case. To construct the three-dimensional mesh, a translation of

three nodes of the two-dimensional mesh has been carried out such that there are three planes in the

z-direction.

Figure 8. Low-Mach-number jet: decrease in ~k and ~e along axis

Figure 9. Three-dimensional mesh of supersonic mixing layer
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The computed and experimental similarity pro®les of the mean velocity �U ÿ U2=U1 ÿ U2�
(Figure 10) and the correlation gu001u002=�U1 ÿ U2�2 (Figure 11) are plotted in three sections in

accordance with the thickness of the mixing layer. The velocity pro®les exhibit good agreement. The

correlation pro®les present a peak near the centre of the mixing layer; although its shape is close to

the experimental results, its level is different. The same discrepancy occurs in the two-dimensional

computation. This can be explained by two facts.

1. There is no experimental information about the level of ~e in the inlet section, so the in¯ow

conditions for ~e have been computed assuming that the turbulent viscosity is 100 times greater

than the ¯uid viscosity, which might not correspond exactly to reality.

2. The second point is that there are no compressibility terms in the standard k±e model, which are

not negligible in the mixing zone.

Two criteria are used to verify that the converged state is obtained: the ®rst is the balance of inlet

and outlet mass ¯ows, which must be zero, and the second is the decrease in some norms during time

iterations. Two norms are used in our calculations: the ®rst is the maximum correction over the whole

mesh, the L1 norm, and the second is the L2 norm, which is the mean spatial correction. These norms

are evaluated only on the density, because a similar behaviour has been noticed for all state vector

variables.

The convergence history of the L1 and L2 norms corresponding to the mixing layer calculation is

presented in Figure 12. A lower limit is reached in roughly 300 iterations, with the number CFL

increasing as the inverse of the L2 residual.

A global view of the resulting ¯ow is shown in Plate 2: the iso-values of turbulent kinetic energy

are presented. The two-dimensional feature of the ¯ow as well as the linear growth rate of the mixing

layer can be noticed.

Figure 10. Supersonic mixing layer: dimensionless pro®les of ~u1
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Figure 11. Supersonic mixing layer: dimensionless pro®les of u001; u002

Figure 12. Supersonic mixing layer: convergence history of L1 and L2 norms
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Figure 13. Three-dimensional mesh of pipe

Figure 14. Pipe: pro®les of velocity at inlet, middle and outlet sections
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4.3. Three-dimensional pipe

In order to validate the turbulent boundary conditions on a solid wall in three dimensions, an

incompressible pipe is computed. This case has been chosen for its simplicity and because

experimental data are available.31 The ¯ow is induced by a pressure gradient between the in¯ow and

out¯ow sections. The turbulence is fully developed and the pro®les of velocity and turbulent scales

are independent of the section. The distance between the two plates is 0�18 m and the velocity at the

middle height of the pipe is 10�5 m s71. The Reynolds number is 57,000. On the wall the friction

velocity is 0�39 m s71.

The three-dimensional mesh has been obtained from a translation of the two-dimensional mesh

(Figure 13). There are 10 nodes in the x-direction, 60 nodes in the y-direction with a geometrical

progression near the wall where the gradients are strong, and three nodes in the z-direction. Inlet

boundary conditions are provided by a one-dimensional code32 from available experimental data. The

simulation is carried out on only half of the geometry owing to symmetry conditions, so slip

conditions are imposed on the axis. Static pressure is imposed at the outlet. The pro®les are made

dimensionless using the half-height of the pipe and the velocity on the axis. Pro®les of the ®rst

component of velocity and the turbulent kinetic energy are shown at three sections (inlet, middle of

pipe, outlet) in Figures 14 and 15, respectively.

Among the three sections the ~u1-component pro®les are similar, which is consistent with the fully

developed turbulence hypothesis. However, there are small discrepancies in the level of ~k between

the inlet section and the other two sections. These are due to a small difference in the friction velocity

of the wall, ~k being proportional to the square of the friction velocity. The pressure was made

Figure 15. Pipe: pro®les of turbulent kinetic energy at inlet, middle and outlet sections
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dimensionless using the inlet pressure and is compared with the two-dimensional result. As shown in

Figure 16, it is a linear function of x, which is in good agreement with the theory. These results prove

the good behaviour of the wall functions for three-dimensional applications.

5. CONCLUSIONS

A three-dimensional method to solve turbulent compressible ¯ows has been presented. The

turbulence is described by a standard k±e model. This numerical method is an extension of a ®nite

volume±®nite element method developed to solve the laminar Navier±Stokes equations. Three

validation test cases are presented: a low-Mach-number turbulent jet, a compressible shear layer and

a three-dimensional pipe. The main characteristics of the ¯ow are well predicted and the converged

solutions are obtained much more quickly than with an explicit time integration scheme. The use of

k±e model is very promising and allows this numerical technique to be employed to predict turbulent

compressible ¯ows in complex three-dimensional geometries. Industrial applications of this code are

under development for predicting ¯ow in the combustion chamber of a gas turbine engine. The work

under development includes the improvement of the k±e model in order to take into account

compressibility effects and the introduction of multiple species and combustion with a decoupled

approach.
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Figure 16. Pipe: static pressure along x-axis
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